Вентиляция картера: Система вентиляции картера – назначение, устройство, принцип работы

Содержание

Что может не работать в системе вентиляции картера?

  • Главная
  • Статьи
  • Просто, но не гениально: что может не работать в системе вентиляции картера?

Автор: Михаил Баландин

Иногда с автомобилем случаются вещи, которые сильно расстраивают его владельца. Что-то стал жрать масло, дроссельная заслонка постоянно грязная, масло из всех щелей течёт… Даже воздушный фильтр в этом масле. Наверное, пора думать о «капиталке». Деньги, деньги, деньги. Боль, тоска, безысходность. А может, рано точить бритву и наполнять ванну тёплой водой? Может, не всё так плохо, и решение проблемы кроется в маленькой и не такой уж дорогой детальке со странным названием «клапан PCV»? 

 

Теория газов​

Все мы прекрасно помним, что мотор работает вследствие сгорания топливо-воздушной смеси. В момент, когда в камере сгорания начинается этот очень красивый, но невидимый глазу процесс, там резко возрастает давление. Это давление толкает поршень вниз, поршень давит на свою шейку коленвала, а тот выполняет свою непосредственную работы: преобразует поступательное движение шатуна поршня во вращательное, которое передаёт на маховик двигателя. Картинка идеальная, но в жизни, как вы понимаете, что-то всегда идёт не так. В нашем случае не все газы, образующиеся во время горения, выходят потом через выпускной клапан в систему выпуска. Часть их обязательно прорывается в картер. Грубо говоря – под поршень. Происходит это по простой причине: как бы плотно ни прилегали компрессионные кольца, у них всегда есть хотя бы минимальный зазор – иначе поршень просто не смог бы ходить внутри цилиндра. А на холодном моторе этот зазор ещё больше, так что газ, который находится под очень большим давлением, лазейку в картер мотора всегда найдёт. Чем это грозит?

В этих газах есть всё то, чего не любит моторное масло. Не полностью сгоревший бензин, пары воды (они всегда есть в воздухе), частички нагара – всё это оседает в моторном масле. Ничего хорошего, конечно, после этого не происходит: масло усиленно стареет и перестаёт нормально работать. Но это не самое страшное.

Гораздо хуже, что в картере просто не должно быть высокого давления, а картерные газы его сильно увеличивают. Последствия этого процесса очень неприятные. Газы буквально распирают мотор, и он начинает выдавливать из себя всё лишнее. А когда мотор «пучит», лишним ему кажется всё: и картерные газы, и масло. Газы стараются выйти через масляный щуп, выталкивая его наружу, через маслозаливную горловину и все прочие места. В том числе – и через все уплотнения и сальники. Если ему удаются вытолкнуть сальник коленвала, то через него потечёт и масло. 

Одним словом, как-то эти газы надо выводить. И для этого придумали систему вентиляции картерных газов. 

Открыто и закрыто

Изначально система вентиляции была примитивной – открытого типа (или эжекционная). Помните такое потрясающее слово – сапун? Вот это и было той самой открытой системой вентиляции. Через гордо торчащий сапун в атмосферу выбрасывались картерные газы со всеми их прелестями в виде сажи, масла и прочей гадости. А иногда оттуда ничего не выбрасывалось, потому что особой эффективностью такая система не отличалась. 

Не отличалась хотя бы просто потому, что на холостых оборотах давления картерных газов не хватало, чтобы они выводились из мотора. Всё прорвавшееся в картер в нём и откладывалось в масло. Кроме того, всегда была вероятность через сапун хватануть грязного воздуха, который потом оказался бы в картере. Там все примеси из этого воздуха осели бы в масло, а это существенно снизило бы ресурс цилиндро-поршневой группы. В общем, ничего хорошего в сапуне не было, и система прямо-таки требовала серьёзного пересмотра. И в результате такого пересмотра появилась современная система PCV (positive crankcase ventilation) – принудительная система вентиляции. 

Системы PCV отличаются по реализации. Они могут быть проще или сложнее, с двумя контурами, с эжекторным насосом, с редукционным клапаном. Но мы рассмотрим самую простую и распространённую систему с одним клапаном PCV. Итак, как это работает?

Разработчики этой системы использовали особенность впускного коллектора: в нём создаётся разрежение. Особенно сильным оно бывает на холостых или минимальных оборотах. Если соединить тот самый воображаемый сапун открытой системы с впускным коллектором, разрежение будет вытягивать картерные газы. Кроме того, они будут поступать опять во впуск, а не в атмосферу, что люто обрадует экологов. Остаётся только решить две проблемы: как дозировать это самое «всасывание» со стороны коллектора и как не дать вместе с картерными газами попасть во впуск маслу и прочим ненужным там фракциям.

Решением первой задачи занимается как раз тот самый клапан PCV. Во время работы на минимальных оборотах он практически закрыт. А значит, в коллекторе остаётся разрежение, а так как в таком режиме выброс картерных газов минимален, даже небольшого их отвода вполне достаточно. По мере роста оборотов коленвала клапан начинает открываться. Это необходимо по двум причинам: во-первых, разрежение падает, а значит, нужно более интенсивно откачивать газы, а во-вторых, количество этих газов растёт. Открытие клапана позволяет удалять большое количество газов даже при небольшом разрежении во впускном коллекторе. 

Второй вопрос – это очистка картерных газов. Тут есть несколько способов, но наиболее простой и очевидный – это установка маслоотделителя. В нём есть сложный лабиринт, по которому движутся газы. Во время прохождения лабиринта скорость движения падает, а капельки масла оседают на его стенках, откуда стекают обратно в картер. Более-менее чистый воздух после этого поступает опять во впуск. Конечно, маслоотделители бывают разных конструкций – лабиринтные или центробежные, но задачу они решают одну и ту же.

У системы PCV есть ещё одно небольшое, но важное преимущество: после пуска холодного мотора в мороз в дроссельную заслонку попадает и тёплый воздух из системы вентиляции. Прогрев проходит быстрее и теоретически – менее травматично для холодного пуска. Правда, при условии, что система исправна. А она иногда всё-таки выходит из строя.

 Работает или нет?

Существуют десятки способов проверить, работает ли клапан PCV (для краткости – КВКГ, клапан вентиляции картерных газов). Почти все они порождены сумрачным народным гением и сводятся к тому, чтобы проверить, прут ли газы из мотора или нет. Наиболее простой способ – открутить крышку маслозаливной горловины и посмотреть, что произойдёт дальше. Если приложить руку и почувствовать давление валящих оттуда газов – КВКГ не работает. Отчасти правда в этом есть, но не во всём. Потому что если, например, поршневая очень устала жить, то повышенное давление тоже будет. Даже если клапан работает. А на некоторых моторах (например, BMW с Valvetronic, N42, N46 и иже с ними) даже с исправной системой вентиляции некоторое давление может быть, так что этот способ помогает мало. То же самое и насчёт всасывания воздуха.

Мол, в исправном моторе крышка будет присасываться к горловине. Обычно – да, но не обязательно. Если всасывается очень сильно, то, возможно, клапан заклинил в открытом положении или у него порвалась мембрана. 

Всё то же самое относится и к проверке воздушного фильтра. Масло на этом фильтре – это не обязательно признак почившей системы вентиляции. Оно там может быть из-за той же убитой поршневой группы. Однако если вы уверены, что ЦПГ исправна, а масляный щуп вылетает со своего места, это действительно может быть признаком неисправности системы ВКГ. Особенно если есть сопутствующие проблемы (например, то же масло на воздушном фильтре). 

Есть ещё один способ проверки, о котором часто говорят в Интернете, – снять клапан и потрясти им. Если внутри ничего не бренчит, он заклинил. И это тоже не лучший способ диагностики. 

Гораздо лучше снять патрубки вентиляции (обычно это сделать не сложно) и посмотреть, что у них там внутри. Если они забиты отложениями, то клапан, скорее всего, тоже забит и, вероятно, не работает. В этом случае патрубки стоит промыть, а клапан просто поставить новый. Заодно есть повод как минимум проверить компрессию: может оказаться, что этот шлак в системе неспроста, и пора подумать о ремонте мотора.

Не стоит забывать о том, что лабиринт маслоотделителя тоже со временем покрывается отложениями. Это приводит к похожим симптомам: в картере растёт давление, возможны течи масла через уплотнения и сальники. В этом случае всё приходится промывать. Самое печальное, что грязные картерные газы могут загадить не только дроссельную заслонку и весь впуск, но и сократить этой дрянью жизнь другой системе – системе рециркуляции отработавших газов EGR. Так что затягивать с ремонтом вентиляции не стоит. 

Ну и последнее. Когда маслоотделитель забит, масло может попадать прямо во впуск. Это приводит к дымности, а если система вообще на ладан дышит, то к росту расхода масла. Всё это по симптомам похоже на износ маслоотражательных колпачков или поршневых колец. Не стоит сразу лезть в кубышку (если она вообще есть) и торопиться всё это менять.

Иногда достаточно привести в порядок систему вентиляции картерных газов, и проблема решится малой кровью.

Опрос

Были проблемы с масложором?

Ваш голос

Всего голосов:

практика

 

Новые статьи

Популярные тест-драйвы

Тест-драйвы / Тест-драйв Haval Dargo против Mitsubishi Outlander: собака лает, чужестранец идет В дилерском центре Haval на юге Москвы жизнь кипит: покупатели разглядывают машины, общаются с менеджерами и подписывают какие-то бумаги. Пока я ждал выдачи тестового Dargo, такой же кроссов… 14707 7 201 13.09.2022

Тест-драйвы / Тест-драйв Мотор от Mercedes, эмблема от Renault, сборка от Dacia: тест-драйв европейского Logan 1,0 Казалось бы, что нового можно рассказать про Renault Logan второго поколения, известный каждому российскому таксисту, что называется, вдоль и поперёк? Однако конкретно в этом автомобиле есть. .. 12527 10 41 13.08.2022

Тест-драйвы / Тест-драйв Geely Coolray против Haval Jolion: бесплатный сыр? Если бы! Хотите купить сегодня  машину с полноценной гарантией, в кредит по адекватной ставке, без диких дилерских накруток? Сейчас это та еще задачка, ведь полноценную цепочку «представительство – з… 9523 25 30 10.08.2022

Система вентиляции картера двигателя

Казалось бы, сама по себе работа ДВС служит источником, осуществляющим сильное загрязнение атмосферы, а мы пытаемся говорить тут про вентиляцию. Однако не все так просто, мотору, как и всем остальным, тоже нужен свежий воздух. Обеспечивает его и система вентиляции картера.

Содержание

  1. О назначении системы вентиляции
  2. Как происходит вентиляция картера
  3. Варианты создания принудительной очистки от картерных газов

О назначении системы вентиляции

Все проблемы, как всегда, таятся в мелочах. В данном случае это касается имеющихся зазоров между поршнем и блоком цилиндров двигателя. Казалось бы, конструкцией предусмотрены специальные элементы, минимизирующие эти зазоры. И все же, несмотря на уплотняющие кольца, происходит попадание продуктов сгорания топлива, его несгоревших частиц, паров воды в объем картера двигателя. Следствием этого является ухудшение качества масла и потеря его смазывающих свойств. Проявляется подобный эффект в том, что обычное масло становится водно-масляной эмульсией, а также происходит его разжижение.

В цилиндрах двигателя, при его работе, создается повышенное давление, так что нет ничего удивительного, что газы вырываются оттуда с повышенным давлением.

Следствием этого будет создание такого же повышенного давления в картере, что может привести к выдавливанию сальников и утечке масла.

Именно для предотвращения подобных явлений, описанных выше, предназначена система вентиляции картера. Она позволяет вывести из него прорвавшиеся отработанные газы, обеспечить нормальное давление, тем самым, повысить надёжность и долговечность двигателя.

Как происходит вентиляция картера

Как всегда в таких случаях, существует выбор.

Реализация данной системы может быть двух типов:

  • открытая;
  • закрытая.

В первом случае, когда система вентиляции картера двигателя открытая, прорвавшиеся выхлопные газы удаляются наружу, за пределы силового агрегата. Простота и дешевизна этого способа компенсируется загрязнением окружающей среды.

Кроме того, следует знать, что открытая вентиляция:

  1. не работает при малой скорости и на холостом ходу;
  2. не справляется со своими обязанностями при высоких оборотах;
  3. через нее возможно засасывание атмосферного нефильтрованного воздуха при остывании двигателя;
  4. может послужить одной из причин увеличенного расхода масла, а также причиной замасливания мотора.

Закрытую или принудительную вентиляцию картера осуществляют тогда, когда пытаются уменьшить степень загрязнения, оказываемую автомобилем. Для этого устанавливается специальный клапан, благодаря которому, при принудительной вентиляции картера, попавшие туда выхлопные газы, выводятся во впускной коллектор двигателя.

К недостаткам такой системы можно отнести:

  • усиленное загрязнение карбюратора и входных воздуховодов;
  • сильная тяга на высоких оборотах в системе отсоса отработанных газов, что может служить дополнительной причиной окисления масла.

К достоинствам следует отнести:

  1. уменьшенный расход масла;
  2. стабильную работу в зимний период за счет подогрева входного воздуха картерными газами;
  3. они же повышают детонационную стойкость двигателя за счет разбавления топливно-воздушной смеси.

Варианты создания принудительной очистки от картерных газов

Правда не все так просто, как кажется с первого взгляда. Существует два подхода, по которым может быть выполнена принудительная вентиляция картера. Из картера могут выводиться выхлопные газы, а возможно и обратное действие — приток воздуха снаружи.

Пример того, как построена система принудительной вентиляции картера, основанная на отводе выхлопных газов, приведен выше. При этом прорвавшиеся отработанные газы, оказываются под действием разрежения во впускном коллекторе и поступают через маслоотделитель (1), клапан (2) и по шлангам, очистившись от частиц масла, попадают опять в цилиндры двигателя.

Вариант, когда система вентиляции построена на притоке свежего воздуха, приведен на рисунке ниже. В этом случае наружный воздух попадает в картер мотора, смешивается с картерным газами, и через специальный клапан PCV поступает обратно в цилиндры мотора. Построенная таким образом система вентиляции, позволяет избежать попадания продуктов работы ДВС в атмосферу. Именно такой подход используется современными автопроизводителями, при проектировании и изготовлении автомобилей.

Для поддержания нормальной работы мотора на холостом ходу, клапан PCV запирает выход газов из картера, при глубоком разрежении в трубопроводе.

Непременным атрибутом современного ДВС является вентиляции картера, выполненная чаще всего как закрытая система. Она позволяет повысить надёжность работы мотора и уменьшить отрицательное воздействие выхлопа автомобиля на атмосферу.

Роль клапана принудительной вентиляции картера (PCV)

Клапан принудительной вентиляции картера или PCV играет решающую роль в автомобилях с двигателями внутреннего сгорания, поскольку он помогает двигателю справиться с так называемым явлением прорыва газов. . Однако из-за того, что система настолько проста и требует минимального обслуживания, что ее часто упускают из виду, что приводит к засорению PCV или маслоотделителей. Далее мы выделим важную функцию PCV, опишем его компоненты и принцип их работы, а также наиболее распространенные проблемы, которые могут возникнуть с этим компонентом.

Картерные газы, образующиеся в двигателях внутреннего сгорания

При работе двигателей внутреннего сгорания, в основном в фазах сжатия и рабочего такта, происходит небольшое, но неизбежное прохождение газов мимо поршневых колец, называемое продувкой явлением . В фазе сжатия картерные газы представляют собой впускные газы, смешанные с углеводородами, а после взрыва в фазе рабочего такта картерные газы могут также содержать некоторое количество выхлопных газов.

Картерные газы попадают в корпус картера , где они повышают давление. Удаление этих паров необходимо по нескольким причинам:

  • Присутствие углеводородов в картерных газах вызывает преждевременную деградацию моторного масла .
  • Влага, осаждающаяся в картере двигателя при охлаждении двигателя, циркулирует насосом и может повлиять на смазку или вызвать отказ смазки в определенных системах и местах.
  • Производительность двигателя снижается , так как избыточное давление препятствует движению поршня вниз.
  • Давление может в конечном итоге привести к разрыву уплотнений и прокладок, что приведет к утечке масла .

Отвод картерных газов: 3 важнейших компонента

Для успешного отвода наиболее важными частями являются отсасывающая трубка, PCV и вентиляционные шланги.

  • Вытяжная трубка : в автомобилях с наддувом или без турбонаддува вытяжная трубка соединяется с впускным коллектором. Напротив, в автомобилях с турбонаддувом выпускная трубка расположена на входе в турбокомпрессор.
  • PCV : клапан принудительной вентиляции картера отвечает за удаление картерных газов из картера или регулирование прохождения этих газов. Для этого PCV использует вакуум, который создается во впускных патрубках при работающем двигателе.
  • Дыхательные шланги : газы транспортируются через дыхательные трубы или дыхательные шланги двигателя.

Это схематический обзор описанного выше процесса для автомобилей с турбонаддувом:

Удаление картерных газов в автомобилях с турбонаддувом

 

Увеличение изображения PCV или клапана принудительной вентиляции картера

1 – Общее введение .

Отводя картерные газы, клапан регулирования давления снижает эффект вакуума в картере. Это предотвращает повреждение уплотнений двигателя (которые могут лопнуть, если давление станет слишком высоким).

Поскольку система PCV всасывает воздух и выхлопные газы во впускной коллектор, она оказывает такое же влияние на воздушно-топливную смесь, как и утечка вакуума. Это компенсируется системой впрыска топлива . Следовательно, пока все работает правильно, система PCV не оказывает чистого влияния на экономию топлива, выбросы или производительность двигателя.

Современные клапаны принудительной вентиляции картера сконструированы иначе, чем старых металлических клапанов, хотя принцип их действия аналогичен.

Old PCV Новый PCV

2 – PCV: Основные детали

Система PCV состоит из пяти основных деталей, представленных схематично ниже:

PCV Система: Основные детали

9000 2

99292 PCV.

3 – Мембрана клапана

При низком разрежении в трубопроводе системы впуска или при повышении давления картерных газов клапан 9Диафрагма клапана 0003 открывается, пропуская картерные газы во впуск.

Когда во впускной системе образуется вакуум, диафрагма закрывается и прерывает поток газов из картера во впускную систему, таким образом устраняя проблему слишком большого вакуума в масляном поддоне.

      

Мембрана клапана (закрытая)

 

4 – Маслоотделитель

0003 имеет тенденцию образовываться масляный туман . Этот туман циркулирует через вентиляционные трубы двигателя и PCV, образуя углерод во впускной системе и камерах сгорания. Вот почему многие автомобили содержат маслоотделитель . Эта часть находится перед PCV и служит для конденсации масляного тумана и возврата капель масла в картер, предотвращая их попадание во впуск, тем самым вызывая меньшее отложение нагара.

 

    Маслоотделитель

 

5 – Распространенные неисправности: засорение PCV или маслоотделителя

Хотя система PCV обычно считается безотказной, засорение PCV или маслоотделителя является довольно распространенной проблемой. Накопление отложений масла и топливного шлама и/или шлама внутри PCV или декантера может ограничивать или даже блокировать поток паров. Забитый или забитый клапан PCV не может втягивать влагу и пары из картера. Это может привести к накоплению шлама, повреждающего двигатель, а также к повышению давления, которое может вызвать 9Масло 0003 на течь через прокладки и сальники.

Забитый шланг PCV также создаст избыточное давление в картере двигателя, что может привести к другим отказам системы . Например, если давление в картере слишком высокое в двигателях с турбонаддувом, оно будет передаваться в возвратную масляную линию турбонагнетателя. Слив масла турбокомпрессора затруднен, и масло будет вытекать со стороны турбины, что приведет к увеличению расхода масла. Следовательно, становится также трудно обновлять масло, смазывающее вал турбонагнетателя. Это масло в конечном итоге сгорает, и вал повреждается из-за отсутствие смазки .

Другая ошибка возникает, если клапан становится постоянно открытым , либо из-за застревания внутренней мембраны в этом положении, либо из-за разрыва. Результатом является чрезмерный, неконтролируемый поток воздуха через трубы, создающий неустойчивый холостой ход, затрудненный запуск или даже пропуски зажигания двигателя . Автомобили с впрыском топлива с лямбда-зондом обнаруживают любые изменения в топливно-воздушной смеси и компенсируют их, увеличивая или уменьшая краткосрочную и долгосрочную корректировку подачи топлива (STFT и LTFT). Небольшие исправления не вызывают проблем, но большие исправления приведут к бедной смеси и прямому коду неисправности (DTC) при включении Лампа индикатора неисправности (MIL).

Лампа индикации неисправности

 

Если клапан остается открытым в течение длительного времени, пары масла, образующиеся (в основном) при высоких оборотах, могут попасть во впускной коллектор, где они конденсируются. При последующем сгорании моторного масла образуется белых дыма .

 

Повреждение из-за заклинивания клапана в открытом положении

 

6 – Обслуживание системы PCV имеет ключевое значение

Поскольку система PCV относительно проста и требует минимального обслуживания, ее часто упускают из виду. Обычный интервал замены для многих PCV составляет 100 000 километров, однако во многих двигателях PCV никогда не требует замены. В руководствах по эксплуатации многих последних моделей автомобилей даже не упоминается рекомендуемый интервал замены PCV, рекомендуя лишь «периодически» «осматривать» систему.

Большинство PCV действительно служат долго, но они могут изнашиваться или засоряться , особенно если владелец транспортного средства пренебрегает регулярной заменой масла, а это означает, что в картере скапливается шлам.

Признаки скопления шлама в картере

 

Рекомендуется периодически осматривать PCV и заменять их, если у вас есть сомнения в их способности работать правильно. Кроме того, как мы видели в предыдущей статье, многие клапаны имеют встроенную газовую трубку, которая со временем становится хрупкой. Вот почему проверка системы PCV должна быть стандартной частью вашей процедуры диагностики и обслуживания.

Управление прорывами газов в двигателе с помощью систем вентиляции картера

Содержание:

  1. Введение
  2. Что такое прорыв?
  3. Как создается прорыв?
  4. Как чрезмерный прорыв газов вредит двигателю?
  5. Что такое вентиляция картера?
  6. Какие существуют типы систем вентиляции картера?
  7. Каковы преимущества системы вентиляции картера?
    • Регулятор давления в картере
    • Снижение расхода масла
    • Повышение эффективности двигателя
    • Защита окружающей среды
    • Соблюдение экологических норм
  8. Полная система. Больше, чем просто «Картерный фильтр»
  9. Заключение

 

Введение

 

В этой статье обсуждается прорыв газов в двигателе, причины прорыва газов и использование систем вентиляции картера для борьбы с прорывом газов в двигателе. Мы объясняем различные типы систем вентиляции картера, представленные на рынке, и преимущества каждого типа. Обсуждаемые здесь двигатели относятся к категории поршневых двигателей внутреннего сгорания (RICE) и включают конфигурации с искровым зажиганием (двигатель SI) или с воспламенением от сжатия (двигатель CI). Стационарные двигатели используются для выработки электроэнергии (например, в режиме ожидания, пикового/сглаживания, основной мощности) и механического привода. (например, газовые компрессоры и насосы). Двигатели также используются в морских силовых установках, бортовых силовых установках и локомотивах.

 

Что такое Blow-by?

 

Прорыв газов образуется, когда топливовоздушная смесь и продукты сгорания просачиваются через поршневые кольца двигателя. Топливовоздушная смесь под давлением и продукты сгорания просачиваются в картер двигателя через небольшие зазоры между кольцами и стенками цилиндров. Образовавшаяся смесь тумана смазочного масла и газов называется прорывом картерных газов.

 

Как создается прорыв?

 

В большинстве двигателей внутреннего сгорания используются поршни, клапаны и валы для преобразования энергии контролируемых взрывов в механическую энергию. Поршни – это сердце и душа двигателя. Они перемещают газы через двигатель и используют энергию, создаваемую во время рабочего такта. В двигателе поршни соединены с вращающимся коленчатым валом и движутся в прямолинейном направлении внутри неподвижного полого цилиндра. Коленчатый вал воспринимает линейное движение поршней и преобразует его во вращательное движение, которое можно использовать для привода электродвигателей генераторных установок, компрессоров и другого вращательного оборудования. Область двигателя, в которой находится коленчатый вал, называется картером.

Когда поршень завершает свое движение от нижней части цилиндра к верхней или от верхней части цилиндра к нижней части, это движение называется тактом. Когда двигатель называют двухтактным или четырехтактным, это указывает на количество тактов, необходимых для завершения цикла сгорания. В этой статье мы сосредоточимся на четырехтактном типе и четырех тактах, которые происходят в следующем порядке: впуск, сжатие, мощность и выпуск. Прорыв картера происходит во время такта сжатия и рабочего такта.

 

 

 

Как правило, новые двигатели имеют более низкий уровень прорыва газов по сравнению со старыми изношенными двигателями. По мере работы двигателя внутренние компоненты камеры сгорания начинают изнашиваться, что приводит к увеличению зазоров между стенками цилиндров и поршневыми кольцами. Этот износ позволяет большему количеству картерных газов просачиваться через поршневые кольца в картер двигателя. Хорошее эмпирическое правило состоит в том, что от «изношенного» двигателя следует ожидать в два раза больше прорыва газов, чем от «нового».

 

 

Как чрезмерный прорыв газов вредит двигателю?

 

Выхлопные газы двигателя необходимо выпускать из картера, чтобы предотвратить некоторые проблемы. Общие проблемы включают:

 

●    Чрезмерное давление в картере двигателя  – Повышенное давление в картере двигателя может привести к утечке масла через уплотнения двигателя, что способствует потере масла.

 

●     Повышенный расход масла  – Когда прорыв газов содержит большое количество масляного тумана, который выбрасывается в атмосферу и не регенерируется, эффективность системы смазки двигателя может снизиться из-за чрезмерного расхода масла.

 

●     Снижение мощности двигателя – Когда картерные газы направляются обратно через впускной патрубок двигателя (закрытый картер). Масло и другие загрязняющие вещества могут покрывать внутренние компоненты двигателя, такие как турбокомпрессоры и промежуточные охладители, что может значительно снизить эффективность и производительность.

 

Что такое вентиляция картера?

 

Вентиляция картера — это процесс вентиляции или удаления картерных газов из картера двигателя для предотвращения чрезмерного повышения давления внутри двигателя. Картерные газы смешиваются с масляным туманом и другими загрязнителями, которые могут повредить внутренние компоненты двигателя и загрязнить окружающую среду. Высокоэффективный фильтр вентиляции картера необходим для очистки выпускаемых газов перед возвратом на впуск двигателя или выпуском в окружающую среду.

 

Какие существуют типы систем вентиляции картера?

 

В зависимости от установки и требований к выбросам картерные газы удаляются с помощью двух типов систем: открытой вентиляции картера (OCV) и закрытой вентиляции картера (CCV).

 

Системы OCV применяются при выбросе картерных газов в атмосферу. Система OCV может представлять собой простую низкоэффективную систему с низким противодавлением, сапун из проволочной сетки или включать высокоэффективный коалесцирующий элемент, предназначенный для улавливания большого количества масляного тумана. Наиболее эффективные системы OCV объединяют высокоэффективный коалесцирующий фильтр с источником вакуума и механизмом регулирования давления в картере. Преимущество использования открытых систем вентиляции картера заключается в том, что вероятность накопления загрязняющих веществ и масла внутри турбокомпрессора и промежуточных охладителей сводится к минимуму. Это особенно важно при работе со свалочным газом, биогазом, синтез-газом и другими установками, где качество газа может быть проблемой (Solberg SME и ACVB).

 

Системы CCV применяются, когда картерные газы направляются обратно на впуск двигателя. В большинстве случаев он будет проходить перед турбиной (крыльчаткой компрессора) и после воздухоочистителя двигателя. Некоторые из них будут направляться в выхлоп двигателя. Поскольку экологические нормы становятся все более строгими, использование систем закрытой вентиляции картера (CCV) растет. Отвод картерных газов обратно через впускной тракт двигателя позволяет операторам контролировать общие выбросы через выхлопные газы двигателя и устранять источник выбросов. Закрытые системы вентиляции картера подходят для многих типов установок, особенно если в CCV встроена технология регулирования давления (Solberg ACV).

 

Оба типа систем могут эффективно регулировать давление в картере и соответствовать экологическим нормам. Дополнительную информацию см. в таблице 1.1 ниже.

Каковы преимущества системы вентиляции картера?

Хорошо спроектированная и правильно подобранная система вентиляции картера значительно помогает поддерживать надежность двигателя и со временем снижает затраты на техническое обслуживание. Это снизит расход моторного масла и повысит эффективность и производительность двигателя. Он делает это, регулируя давление в картере в заданном диапазоне и улавливая масло, уносимое картерными газами.

Регулирование давления в картере 

Давлением в картере можно управлять с помощью впуска двигателя в качестве источника вакуума (CCV) или внешнего источника вакуума, такого как регенеративный вентилятор (OCV). В любом случае уровень вакуума необходимо регулировать, чтобы обеспечить поддержание давления в картере в заданном диапазоне. Обычно это достигается с помощью ручных клапанов, автоматических клапанов или приводов с регулируемой скоростью. Для систем CCV прогресс заключается в использовании автоматических клапанов регулирования вакуума, таких как те, что используются в линейках продуктов Solberg серий ACV и ACVB. Для систем OCV наиболее распространено ручное управление клапаном, однако другие технологии, такие как системы рециркуляции (SME-R) и автоматическое механическое управление (Solberg ACVB), набирают обороты в широком спектре двигателей. Спецификации всасывания или давления в картере двигателя обычно находятся в диапазоне от (-3) до (+2) дюймов водяного столба, от (-7,5) до (+5) мбар или от (-0,75) до (0,5) кПа. Спецификации двигателей OEM различаются в зависимости от марки и модели двигателя, и лучше всего проконсультироваться с руководством по эксплуатации OEM, чтобы узнать идеальный диапазон рабочего давления в картере для конкретного двигателя.

Снижение расхода масла

Картерный фильтр очищает выбрасываемые картерные газы, чтобы убедиться, что они не содержат загрязнений, прежде чем они будут выброшены в окружающую среду или возвращены на впуск двигателя. Масляный туман является основной проблемой при удалении картерных газов. Функция фильтра заключается в улавливании и объединении масляного тумана, захваченного картерными газами, и возвращении его в двигатель или в поддон для отработанного масла. При возврате масла в картер двигателя можно значительно снизить расход масла за счет вентиляции картера.

Повышение эффективности двигателя 

Как закрытая вентиляция картера (CCV), так и открытая вентиляция картера (OCV) удаляют загрязняющие вещества и загрязнения из картерных газов. Эффективность фильтра особенно важна для любого применения системы CCV. Высокоэффективные коалесцирующие фильтры очень эффективно уменьшают отложения на турбинах, промежуточных охладителях и других внутренних компонентах. Некоторые частицы и масляный туман все же проходят через фильтры. В конце концов, загрязняющие вещества будут накапливаться, что потенциально может повлиять на поверхности турбокомпрессора и снизить эффективность его работы. Следовательно, лучше всего выбирать фильтры с максимально возможной эффективностью при отводе картерных газов обратно через впуск двигателя.

(высокоэффективная фильтрация обычно составляет от 99 % до 99,97 % при 0,3 мкм)

Защита окружающей среды

Системы вентиляции картера с высокоэффективными фильтрами защищают от масляного тумана, дыма, запахов и других твердых частиц попадание в окружающую среду. Когда открытые системы вентиляции картера (OCV) выпускают неочищенные картерные газы в атмосферу, масляный туман скапливается в зданиях и на окружающем оборудовании, включая двигатель. По мере того, как масло скапливается на поверхностях, возникает опасность поскользнуться, а также возможна опасность возгорания. Скопление масляного тумана в плохо проветриваемых помещениях может вызвать проблемы с дыханием и раздражение глаз у персонала завода. Кроме того, утечки через уплотнения двигателя, вызванные избыточным давлением в картере, могут создать опасность поскользнуться для операторов установки.

Соответствие нормам по охране окружающей среды 

Национальные или региональные агентства (EPA, IMO и т. д.) могут потребовать уменьшения или устранения картерных выбросов. Конкретные требования обычно зависят от типа топлива, стационарной или морской установки и режима работы (постоянный или резервный). Даже если ваш двигатель не подпадает под действие конкретных правил, лучше всего способствовать экологической ответственности и безопасности, улавливая выбрасываемые масляные картерные выбросы.

Полная система. BeyondJust A «Картерный фильтр»

Требования к вентиляции картера уникальны для каждой модели двигателя и места установки. Двигатели с каждым годом становятся все более эффективными и сложными. В результате продукты «один размер подходит всем» могут быть не лучшим решением для контроля выбросов и обеспечения оптимальной работы двигателя. Большинство современных высокоэффективных двигателей с низким уровнем выбросов требуют высокоэффективной фильтрации с минимальным противодавлением в картере двигателя. Специальная открытая или закрытая система вентиляции картера необходима для достижения целей по выбросам и выполнения конкретных требований. Полная система картера может включать определенную конфигурацию трубопровода, место установки, тип и расположение дренажной линии, консоли отработанного масла, место выхлопа, а также изоляционные кожухи для фильтров и трубопроводов.

 

 

 

Заключение

Установка идеальной системы для конкретного двигателя, установки или морского судна поможет повысить производительность двигателя, безопасность и соответствие экологическим требованиям, а также повысить надежность и снизить общую стоимость владения. Если у вас есть какие-либо вопросы относительно систем вентиляции картера, пожалуйста, свяжитесь с Solberg Manufacturing.

 

Таблица 1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *